OF
Owen Fernley
$ (\vec{\nabla} \times \color{orange}{\rho} \vec{\nabla} \times \color{fuchsia}{\vec{\mathrm{H}}}) + \frac{\partial\mu_0\color{fuchsia}{\vec{\mathrm{H}}}}{\partial t} = -\frac{\partial\vec{\mathrm{B}}_p}{\partial t} $
$ \vec{\mathrm{H}}_i = \vec{\mathrm{H}}_{i-1} + \vec{\mathrm{D}} $
$ \vec{\nabla} \bullet \vec{\mathrm{E}} = \frac{\rho}{\varepsilon_0} $
$ \vec{\nabla} \bullet \vec{\mathrm{B}} = 0 $
$ \vec{\nabla} \times \vec{\mathrm{E}} = -\frac{\partial\vec{\mathrm{B}}}{\partial t} $
$ \vec{\nabla} \times \vec{\mathrm{B}} = \mu_0 \left(\vec{\mathrm{J}} + \varepsilon_0\frac{\partial\vec{\mathrm{E}}}{\partial t}\right) $
$ \color{red}{\vec{\mathrm{E}}} = \color{orange}{\rho}\vec{\mathrm{J}} $
$ \vec{\nabla} \times \color{red}{\vec{\mathrm{E}}} = -\frac{\partial\vec{\mathrm{B}}}{\partial t} $
$ \vec{\nabla} \times \vec{\mathrm{B}} = \mu_0 \vec{\mathrm{J}} $
$ \color{grey}{\vec{\mathrm{E}} = \rho\vec{\mathrm{J}}} $
$ \vec{\nabla} \times \color{orange}{\rho}\vec{\mathrm{J}} = -\frac{\partial\vec{\mathrm{B}}}{\partial t} $
$ \vec{\nabla} \times \vec{\mathrm{B}} = \mu_0 \vec{\mathrm{J}} $
$ \color{grey}{\vec{\mathrm{E}} = \rho\vec{\mathrm{J}}} $
$ \vec{\nabla} \times \color{orange}{\rho}\vec{\mathrm{J}} = -\frac{\partial\vec{\mathrm{B}}}{\partial t} $
$ \vec{\nabla} \times \color{fuchsia}{\vec{\mathrm{B}}} = \color{fuchsia}{\mu_0} \vec{\mathrm{J}} $
$ \color{grey}{\vec{\mathrm{E}} = \rho\vec{\mathrm{J}}} $
$ \vec{\nabla} \times \color{orange}{\rho}\color{green}{\vec{\mathrm{J}}} = -\frac{\partial\vec{\mathrm{B}}}{\partial t} $
$ \vec{\nabla} \times \color{fuchsia}{\vec{\mathrm{H}}} = \color{green}{\vec{\mathrm{J}}} $
$ \color{grey}{\vec{\mathrm{E}} = \rho\vec{\mathrm{J}}} $
$ \vec{\nabla} \times \color{orange}{\rho} \vec{\nabla} \times \color{fuchsia}{\vec{\mathrm{H}}} = -\frac{\partial\vec{\mathrm{B}}}{\partial t} $
$ \color{grey}{\vec{\nabla} \times \vec{\mathrm{H}} = \vec{\mathrm{J}}} $
$ \vec{\nabla} \times \color{orange}{\rho} (\vec{\nabla} \times \color{fuchsia}{\vec{\mathrm{H}}}) = -\frac{\partial\vec{\mathrm{B}}}{\partial t} $
$ \vec{\nabla} \times \color{orange}{\rho} (\vec{\nabla} \times \color{fuchsia}{\vec{\mathrm{H}}}) = \left( \frac{\partial\mu_0\color{fuchsia}{\vec{\mathrm{H}}}}{\partial t} - \frac{\partial\vec{\mathrm{B}}_p}{\partial t} \right) $
$ (\vec{\nabla} \times \color{orange}{\rho} \vec{\nabla} \times \color{fuchsia}{\vec{\mathrm{H}}}) + \frac{\partial\mu_0\color{fuchsia}{\vec{\mathrm{H}}}}{\partial t} = -\frac{\partial\vec{\mathrm{B}}_p}{\partial t} $
$ \color{fuchsia}{\vec{\mathrm{H}}}_i = \color{fuchsia}{\vec{\mathrm{H}}}_{i-1} + \color{fuchsia}{\vec{\mathrm{D}}} $
$ \vec{\nabla} \times \color{orange}{\rho} \vec{\nabla} \times \vec{\alpha}\color{fuchsia}{\vec{\mathrm{D}}} + \frac{\mu_0\color{fuchsia}{\vec{\mathrm{D}}}}{h_t} = -\frac{\partial\vec{\mathrm{B}}_p}{\partial t} - \vec{\nabla} \times \color{orange}{\rho}\vec{\nabla} \times\color{fuchsia}{\vec{\mathrm{H}}} $
Zero Divergence: The $ \vec{\mathrm{C}} $ Vector
$ \vec{\mathrm{H}} = \vec{\mathrm{C}} - \vec{\nabla}\mathrm{g} $
$ \vec{\mathrm{H}} \longrightarrow \vec{\mathrm{C}} $ provided that $ \vec{\nabla} \bullet \vec{\mathrm{H}} = 0 $
Below Surface
$ \vec{\mathrm{H}} = \vec{\nabla}\mathrm{g} $
$\vec{\mathrm{H}} = \vec{\mathrm{C}} - \vec{\nabla}\mathrm{g} $
$\vec{\mathrm{H}} = \vec{\mathrm{C}}$
$\vec{\mathrm{H}_t} = 0$
Outer boundary can be pushed kilometers away
follow the law of geologic superposition
Four runs at once
ideal for lenses
detailing known bodies
References
Balch, S., 1999, Geophysical methods for nickel deposits with examples from Voisey’s Bay: GAC-MAC Meeting, St John’s Newfoundland.
Bengert, B., 2006, Successful application of electro-magnetics in the Reid Brook zone: targeting economic needles in a highly conductive haystack: ASEG Extended Abstracts 2006, 1–4.
Bochev, P. B., J. J. Hu, C. M. Siefert, and R. S. Tuminaro, 2008, An algebraic multigrid approach based on a compatible gauge reformulation of Maxwell’s equations: SIAM Journal on Scientific Computing, 31, 557–583.
Haber, E., D. Oldenburg, and R. Shektman, 2007, Inversion of time domain 3D electromagnetic data: Geophysical Journal International, 132, 1324–1335.
Hiptmair., R., 1997, Multigrid method for H(div) in three dimensions: Electronic Transactions on Numerical Analysis, 6, 133–152.
Hiptmair, R., 1999, Multigrid method for Maxwell’s equations: SIAM Journal on Numerical Analysis, 36, 204–225.
Hiptmair, R., and J. Xu, 2007, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces: SIAM Journal on Numerical Analysis, 45, 2483–2509.
Jahandari, H., and C. G. Farquharson, 2014, A finite-volume solution to the geophysical electromagnetic forward problem using unstructured grids: Geophysics, 79, no. 6, E287-E302.
King, A., 2007, Review of geophysical technology for Ni-Cu-PGE deposits: Proceedings of the 5th Decennial International Conference on Mineral Exploration, 647–665.
Lamontagne, Y., and R. Langridge, 2013, UTEM ISR - induced source resistivity - Sierra Gorda project: ISR across a development-stage copper-molybdenum: KEGS PDAC Symposium 2013, 1-4.
Li, C., and A. J. Naldrett, 1999, Geology and petrology of the Voisey’s Bay intrusion: reaction of olivine with sulfide and silicate liquids: Lithos, 47, 1–31.
Lu, J. J., X. P. Wu, and K. Spitzer, 2010, Algebraic multigrid methods for 3D DC resistivity modeling: Chinese Journal of Geophysics, 53, 700–707.
Moucha, R., and R. C. Bailey, 2004, An accurate and robust multigrid algorithm for 2D forward resistivity modelling: Geophysical Prospecting, 52, 197-212.
Newman, G. A., 2014, A review of high-performance computational strategies for modeling and imaging of electromagnetic induction data: Surveys in Geophysics, 35, 85-100.
Polzer, B., 2000, The role of borehole EM in the discovery and definition of the Kelly Lake Ni- Cu deposit, Sudbury, Canada: 70th Annual International Meeting, SEG, Expanded Abstracts, 1063-1066.
Press, W. H., B. P. Flannery, S. A. Teukolksky, and W. T. Vetterling, 1988, Numerical recipes in C, the art of scientific computing: Cambridge University Press.
Yang, D., and D. W. Oldenburg, 2010, 3D forward modelling and inversion of inductive source resistivity data: 80th Annual International Meeting, SEG, Expanded Abstracts, 588-592.